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DROPLET SIZE DISTRIBUTION IN A PERCOLATION MODEL 

FOR EXPLOSIVE LIQUID DISPERSAL 

F. M. Sultanov and A. L. Yarin UDC 532.529+66.069.8+622.0 

A very complicated problem on irregular motion is involved in theoretical analysis of 
liquid deformation during dispersal and explosive break-up, which in general cannot besolved 
accurately. The chaotic (explosive) dispersal of a liquid is here related to the break-up 
in an infinite cluster as studied in percolation theory. The drop size distribution is de- 
rived theoretically. If the dispersal is planar, the standard empirical relations are ob- 
tained (the Rozin-Rammler law and Weibull distribution), but in the three-dimensional case, 
there are deviations from them. Measurements have also been made on dispersal for a concen- 
trated elastoviscous liquid based on a polymer on wire explosion in a cylindrical volume. 
The measurements on the whole agree satisfactorily with the theory. 

i. The following liquids are examined here: Newtonian ones (in particular, ideal ones) 
with surface tension and polymer ones, which have internal entropy elasticity [i]. For a 
sufficiently concentrated polymer liquid (~1%), the surface tension is usually unimportant, 
since virtually always Gao/~ >> i, in which G is the elastic modulus, ~ the surface tension, 
and a0 the minimum characteristic dimension, which is discussed in detail below. 

At t = 0, a bounded liquid volume with characteristic dimension R0 acquires kinetic 
energy E 0 due for example to an explosion at the center. This concerns particularly the 
electrical explosion of a wire or a detonation within a bounded volume (see [2-4] and Sec. 
3 below). In such cases, there are several factors that lead almost instantly to irregular 
chaotic deformation, which precedes the break-up and favors the latter. One of them is the 
shape imperfection or inhomogeneity in the exploding wire or detonator, which leads to ini- 
tial irregularity in the velocity pattern. Another is that the explosion-cavity expansion 
is accompanied by Rayleigh-Taylor instability [5-7], which is the first stage in the irregu- 
lar motion. As that form of instability develops, the motion becomes more complicated and 
chaotic, and in the nonlinear stage of perturbation growth, vortices arise at the tips of 
the fingers. To some extent, the break-up itself indicates that there are irregular motions, 
and accentuation of the chaotic motion is evident at the stage where there are separate drop- 
lets, which is evidently due to new modes occurring, particularly on expansion in the vacuum, 
which can occur in the motion of the continuous volume at least as small perturbations. 

Sometimes, one expects that the kinetic energy in the irregular motions arising from a 
central explosion will be E ~ E0; this is evident from estimates of the dissipative losses. 
Also, in general refining E does not affect the theory and merely has a quantitative effect 

on the results. 

We assume that the central explosion almost immediately gives rise to internal deforma- 
tions corresponding to many degrees of freedom, which absorb much of E 0. Such motion has 
been discussed [8] and is due either to turbulence or to initial inhomogeneity in the veloc- 
ity pattern from the explosion. 

In general, the dispersal and explosive break-up at present do not allow of a formal 
discussion of the internal irregular motion excitation. Also, there are some examples where 
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there is virtually no excitation of the internal degrees of freedom. However, in some cases 
such as the ones above, it is a natural assumption that almost instantly one gets inertial 
motion having E ~ E0, and because many degrees of freedom are excited, that motion rapidly 
becomes irregular, isotropic, and chaotic. Such cases are considered here. 

The isotropic chaotic motion leads to drops becoming detached from the outer surface 
of the original continous volume; within it, disruption results, which produces new areas 
of free surface and isolated droplets. That picture includes the observed [2-4] mass for- 
mation of free surfaces in growing cavities during explosive dispersal for a cylindrical 
water volume. An important feature used subsequently is that in such isotropic motion, one 
cannot get droplets smaller than a certain size governed by the physical mechanism at the 
microscopic level and by the characteristics of the liquid. This can be demonstrated for 
some important cases. 

In isotropic random deformation, each individual droplet has a deformation rate ~ such 
that 

( l /2 )pR~(?Ro)2~ E, ?,-, (E/pR~) */~, (i.i) 

in which p is density. 

In a strong explosion, the dissipation associated with internal friction can be neglect- 
ed for a time usually sufficient for the break-up to go almost to completion. When however 
dissipative processes predominate, the break-up can evidently be only regular. 

In a newtonian liquid, the kinetic energy of an individual droplet with characteristic 
size a must at least exceed the surface energy: 

(l/2)pa3(?a) 2 >~ =a2. ( 1 . 2 )  

E q u a l i t y  in (1 .2 )  cor responds  to  t he  s i z e  of  t he  s m a l l e s t  drop a0 capable  of  becoming de- 
t ached  from the  bulk ,  so from (1 .1 )  

"" "" \ p E . ]  (1 .3 )  

in which E, is the specific kinetic energy in the deformation. 

Turbulent deformation involves the internal scale in the turbulence s in no way re- 
stricting a0, since at distances e such thattao<a<l o, the differences in velocity may be 
quite sufficient to continue the droplet break-up for a < s [9]. 

In a concentrated polymer liquid, the kinetic energy in the deformation required to de- 
tach a droplet must at least exceed the elastic energy related to the entropy elasticity in 
the macromolecules: 

(i]2)pa~(~a) 2 >~ Ga ~. 

On the assumption that the relative extension in the disruption of a polymer liquid 
X, = 0(i), that inequality can be considered as the condition for the dynamic head (i/2)p- 
(~a) 2 exceeding the failure stress o, ~ GX, 2 ~ G. It is also assumed that one can neglect 
the viscous dissipation and the elastic-stress relaxation in a strong explosion during the 
ongoing dispersal, which is evident from estimates. Then for a polymer liquid 

ao . . . .  o ~,-~,] �9 (1.4) 

At the start, when the deformation has not had time to become isotropically chaotic, 
some parts of the liquid may have deformation rates exceeding the ~ from (i.i), which in 
principle may result in a certain number of droplets with size less than a0, which distorts 
the picture somewhat. 

Above, we have examined liquid break-up under vacuum. If there is surrounding air and 
there are high velocities in the relative motion, one almost instantly gets a chaotic defor- 
mation with kinetic energy E ~ piU02R03, and thus explosive dispersal (Pl is the density of 
air and U 0 is the speed in the relative motion between the center of mass of the liquid and 
the air). The above formulas still apply, in particular (1.3) and (1.4). 
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2. Wenow consider the size distribution. From Sec. i, we consider the entire volume 
as a cluster (or clusters after the start of break-up) composed of individual droplets P 
with size a 0. It is assumed that the entire volume, and any droplet detached from it, will 
consist of clusters of size a0, so the sizes of the detaching droplets may exceed a0, and 
that fairly substantially. An important new feature is that the positions of the individual 
droplets P are random, which assumption is justified for rapid randomization (by comparison 
with the duration of the break-up) as a result of the motion initiated by the central explo- 
sion, which usually occurs for large E, when the Reynolds number is Re = (pE/R0p2) I/2 >> 1 
(p is the effective viscosity). Correspondingly, at time t the droplets P are randomly dis- 
tributed in a region having characteristic dimension R(t) ~ R0(l + ~t). Initially, the ex- 
panding medium is compact (Fig. la), but then it splits up into drops (clusters), which in 
turn break up further (Fig. Ib). We assume that the space is split up into cells with size 
a0, and with probability 

p (t) R~ -- (1 + ~t) -a  
~ (~ + ~t)~ (2.1)  

a cell will be occupied by a droplet P, while with probability i - p it will be free (d repre- 
sents the dimensions of the space characterizing the break-up). For a0 << R0, the Fig. 1 pic- 
ture is that of break-up in an infinite cluster composed of filled cells. The break-up or 
formation of an infinite cluster has been examined in percolation theory [10]. 

As p(t) decreases during the expansion, gaps appear in the infinite cluster (the origin- 
al connected liquid volume), and at time t,, when p(te) = p, (critical value), the infinite 
cluster is destroyed. The body is converted to a group of finite clusters (drops), which 
may in turn break up. The nodal treatment (cells with face length a 0) gives p, = i (d = i), 
p, = 0.593 (d = 2, square lattice) or p, = 0.311 (d = 3, simple cubic lattice) [i0], so t, 
can be calculated from (I.I) and (2.1). 

To derive the size distributions, we used results from percolation theory. The proba- 
bility of a finite cluster existing, composed of s nodes w s for p < p, (t > t,), is normal- 

ized in such a way that ~ws--I and for sufficiently large s has the asymptote 

w~ = w(s) = Ks-0+%xp (--bs~), ( 2 . 2 )  

in  which K i s  a n o r m a l i z a t i o n  f a c t o r  and b = b(p ,  d ) ;  8 = O(~, d ) :  

0, d = l ,  /2, d = i ,  
O ( O < p < p . ) =  t, d = 2 ,  O ( p . ) = ~ =  2,0, d = 2 ,  ( 2 . 3 )  

i , 5 ,  d = 3 ,  2,1, d = 3 ,  

while ~ = 1 for 0 < p < p, and ~ = 0 for p = p,. The [i0, ii] results were used to estimate 
b: b(p = 0.15) = 0.693, d = 2; b(p = 0.15) = 0.36, d = 3; b(p,) = 0, d = 2 and 3. 

We note that w s = Vs/V0, in which V s is the total volume of all clusters composed of s 
nodes, with V 0 the total volume of the medium. 

With accuracy sufficient for the subsequent purposes, (2.2) can be used with s = O(i) 
because correspondingly the s dependence of inw s incorporates not only the power-law term 
but also the logarithmic one. The scope for extrapolating (2.2) to s = O(i) is indicated 
also by the comparison below between the frequency curve derived from that extrapolation 
and empirical data [12], so we used (2.2) to replace the sign of asymptotic equality every- 
where by the usual equal sign. 

710 



We introduce the drop volume V = (4/3)~a03s. Equation (2.2) gives w(s)ds = f(V)dV, in 
which f(v) is the probability density that the drop volume falls in the range from V to V + 
dV, and correspondingly 

3K ( 3 V  ~ -~+1 [ [.3V ~ ~] 
/ (V) = 4aa--~0 k4~a~) exp - -  b \ 4 a a ~  ~ ( 2 . 4 )  

Any dynamic factor showing random and isotropic behavior can only affect a 0 but not 
the form of the universal (2.4), which is of geometrical origin. 

The proportion of the volume accounted for by drops with volumes greater than V is R = 

=~/(V)dV, and from (2.3) is 
V 

r z (1/2) 
R ( V )  = e x p ( - - z )  f o r  d = 2, R ( V )  = t F ( i / 2 )  ' f o r  d = 3, ( 2 . 5 )  

z = 3Vb/(4~ao 3) 
w h e r e  K = b f r o m  t h e  n o r m a l i z a t i o n  c o n d i t i o n  f o r  d = 2 and  K = b l / 2 / F ( 1 / 2 )  f o r  d = 3 ,  w h i l e  
F(.) and Fz(-) are the gamma function and the incomplete gamma function. 

As V = (4/3)~x 3, in which x is characteristic droplet size, the first formula in (2.5) 
takes the form of the empirical Rozin-Rammler law [13, 14]: 

R(x) = exp [--b(x/ao)3], (2.6) 

and W(x) = 1 - R(x) gives a Weibull distribution [14]. The dW/dx frequency curve defined by 
(2.6) corresponds to empirical approximations used for spraying and the dispersal of liquids 
by spray jets [12], which indirectly confirms that (2.2) can be extrapolated to s = O(i). 

The [15] measurements also relate to spraying from jets and lead to R(x) = exp[~(X/xm)n] , 
in which n = 3.21, while results from other sources mentioned in [15] give n = 2-4 (x m is 
the characteristic drop size), which agrees satisfactorily with (2.6). Out of the more de- 
tailed differential characteristics corresponding to the Rozin-Rammler law, the surface and 
bulk distributions agree satisfactorily with the [15] results; there is however a discrepan- 
cy with the numerical distribution, which may correspond to the (2.5) conclusion that when 
the break-up is distinctly of volume type (d = 3), there should be deviations from the Rozin- 
Rammler law, which should be seen primarily in the detailed differential characteristics. 

For d = 2, the Rozin-Rammler law and the Weibull distribution are derived here theoreti- 
cally for liquids, while the parameters appearing in them have been calculated. For d = 3, 
there are deviations from that law and distribution. 

In (2.6), the radius x corresponds to a drop of approximately spherical shape. When 
optical measurements are made on the sizes of drops breaking up in flight, which have com- 
plicated shapes, one can identify the effective radius of inertia, which satisfies [16] x ~ 
a0s I/2 (0 < p < p,, d = 3). If such an effective characteristic is measured, one has to 
compare theory with experiment on the basis that sN(x~o) 2, VN a~sNaoX~ z NV/a~(X/ao) ~ so 
the exponent 3 changes to 2 in (2.6). 

The mean drop volume is proportional to a03, while the mean number is N ~ (R0/a0) 3. 
Then (1.3) and (1.4) give for newtonian and concentrated polymer liquids that 

N,-,pE,Ro/~, N~(pE,IG) 3Is. 

These universal results correspond to the limit of isotropic chaotic deformation. The 
other limit is regular break-up and corresponds to capillary and bending break-up in jets, 
the break-up of edge ridges in free films, Rayleigh-Taylor instability in liquid films ac- 
celerated by gas-pressure differences [5-7, 17-22], etc. 

3. We have made measurements on explosive break-up for a 3% solution of polyethylene 
oxide type PEO-FPR (molecular mass 4.106 g/mole), which is a typical elastoviscous liquid 
[23]. The apparatus was similar to that used in [2-4]. The solution was contained in a 
cylindrical paper tube with radius 2 cm and length 15 cm placed vertically between two 
sleeves. A tungsten wire ran along the axis, whose ends were attached to the sleeves. The 
electrical explosion dispersed the solution mainly in the radial direction, which provided 
close to planar (d = 2) break-up (in the plane of section of the originally cylindrical vol- 
unle ). 
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The droplet distribution was recorded with shields covered by millimeter paper at 1.5 
m from the point of explosion. We used up to 19 shields, with the size of the millimeter 
paper on each 20 cm wide and i m long. This recorded up to 40% of the drops. The liquid 
was at 10~ at the time of explosion and the air temperature was -20~ The drops reaching 
the paper froze rapidly, which largely eliminated the evaporation and the resulting error 
in determining the mass, while also facilitating weighing. 

For weighing, the frozen drops were cut out together with the millimeter paper (the 
paper area somewhat exceeded the area of the attached drop). The weight of the drop and pa- 
per was recorded together with the area of the paper and the area of the base of the drop. 
The drop weight was determined by subtracting the known weight of the paper. This was done 
for all drops. The weighing with an analytical balance was to ~0.i mg. 

For comparison with experiment, we transform (2.5) to 

R ( m ) =  exp(--~o ) for d =  2, R ( m ) = t  rz(l/2) 
r (I/2) ( 3. i) 

(m = pV is mass, m 0 = (4/3)~%3p/b). 

For d = 2, the first formula in (3.1) gives 

for~ d ---- 3, z =  m__ 
m 0 

l n ( t01n l /R)  = l n l 0 + l n m - - l n m  o. (3 .2)  

Figure 2 compares the (3.2) theoretical result with the measurements for the PEO-FPR; 
the circles denote measurements for an explosion with specific energy E, 27.7 J/g, and the 
filled circles are for E, 40 J/g. Lines i and 2 show theoretical (3.2), with m 0 = 3650 mg 
for 27.7 J/g and 995 mg for 40 J/g. The measurements fit the straight lines with slopes of 
i, which confirms (2.5), (3.1), and (3.2), which predict in(101nR -l) ~ inm for d = 2. 

In accordance with (1.4), one should have m0 ~ a0s ~ E, -3/=. The measurements gave 
m01/m02 = 3650/995 = 3.67, which differs from the theoretical (40/27.7) 3/2 = 1.74, possibly 
because much of the liquid evaporates at the higher specific energy, which additionally re- 
duces m02. 

In these experiments, the break-up was close to planar. Interest attaches to the break- 
up of spherical volumes of polymer liquids on central explosion, as this would test the sec- 
ond (3.1) formula. 

We are indebted to V. M. Entov for a useful discussion. 
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